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1 Fourier Transforms of Periodic Functions and Local Solv-
ability of Partial Differential Operators

1.1 Fourier transforms of periodic functions

A function f is periodic if
f(x) = f(x+ a)

for some a and for all x.

Definition 1.1. f ∈ D′ is periodic of period a if

f(φ) = f(φ(·+ a))

Suppose f is periodic; what can we say about f̂? Recall that for functions,

f̂(·+ a) = eia·ξ f̂ .

Using the periodic condition, write this as the multiplication

f̂(1− eiaξ) = 0.

Note that 1 − eiaξ 6= 0 unless ξ = 2πn
a . Then supp f̂ ⊆ 2πn

a Z. As an analogy look at the
condition xf = 0 =⇒ f = cδ0; here, we have zeros at many points. So we conclude that

f̂ =
∑
n

cnδ 2πn
a
.

Theorem 1.1. The coefficients cn are the Fourier coefficients for f in the interval [0, a],
and

f(x) =
∑
n

cne
2πi
a
n.

Here, we have ignored the factors of 2π.
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Remark 1.1. We can multiply f by e−
2πi
a
m and integrate from 0 to a to get

cn =

∫
f(x)e−

2πi
a
mx.

Example 1.1. The simplest periodic distribution is

fa =
∑
n

δna.

Then
f̂a =

∑
n

cnδ 2π
a
n.

If we write
fa(1− e

2πix
a ) = 0,

then we get
f̂a = f̂a(·+ 2π

a ).

Thus, all the cns are the same. So

f̂a = ca
∑
n

δ 2πn
a

= caf 2π
a
.

What is ca? Apply this to a Schwarz function: f̂(φ) = f(φ̂) by definition, so

ca
∑
n∈Z

φ(2πna ) =
∑
m∈Z

φ̂(ma).

This is called the Poisson summation formula.
Now what happens if we replace φ by φeix·ξ0? Then (̂ξ) becomes φ̂(ξ−ξ0). The Poisson

summation formula gives

ca
∑
n

φ(2πna )ei
2πn
a
ξ0 =

∑
φ̂(ma− ξ0).

The dependence of ξ0 on the left hand side is simple. Integrate to get∫ a

0

∑
n

φ(2πna )ei
2πn
a
ξ0 dξ0︸ ︷︷ ︸

=acaφ(0)

=

∫ a

0

∑
m

φ̂(ma− ξ0) dξ0

=

∫
φ̂(ξ) dξ

= φ̂(1)

= φ( 1√
2π
δ0)
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=
1√
2π
φ(0).

Accounting for the constants we ignored before, we get

ca =
1

2πa
.

Remark 1.2. We can use the Poisson summation formula to compute all sorts of series.
Recall that F( 1

1+x) = ce−|ξ| (perhaps omitting constants). Choose a = 2π. The Poisson
summation formula tells us that∑

m∈Z

1

n2 + 1
=

∑
m

e−2π|m| =
2

1− e2π
− 1,

where we have ignored the constants.

1.2 Local solvability of partial differential operators

Let P (D) be our partial differential operator with constant coefficients.

Definition 1.2. P (D) is solvable if for each f , the equation P (D)u = f admits at least
one solution.

If f ∈ D′, then u ∈ D′. If f ∈ S, then u ∈ S. In general, the regularity of f and u will
be related, so when we say P (D) is solvable, we specify a class of functions f .

Definition 1.3. P (D) is locally solvable if for each f ∈ E ′, there exists a solution u ∈ D′
in a neighborhood of the support of f .

If u ∈ E ′, then P (ξ)û(ξ) = f̂(ξ) for ξ ∈ Cn. Here is a narrower version, which we may
regard as the “real definition” of local solvability:

Definition 1.4. P (D) is locally solvable if for each x0, there is an ε > 0 such that if
supp f ⊆ B(x0, ε), then a solution exists.

For today, we will deal with the first, more relaxed definition.

Theorem 1.2. Every constant coefficient partial differential operator is locally solvable (in
the relaxed sense).
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Proof. Suppose f is supported in B ⊆ [0, 2π]n. Take f̃ to be the periodic extension of f ,
and look for a periodic solution ũ to P (D)û = f̃ .

What does this periodization do? Originally, P (D)u = f gives P (ξ)û = f̂ , so û = 1
P (ξ) f̂ .

However, this has issues because P (ξ) can have issues. In the periodic case, we know

̂̃
f(ξ) =

∑
m∈Zn

fmδm,

̂̃u(ξ) =
∑
m∈Z

umδm.

We need P (m)um = fm, which gives

um =
fm
P (m)

, m ∈ Zn.

The advantage is that we only P (m) 6= 0 on lattice points m ∈ Zn. However, the Fourier
transform is defined for temperate distributions, so we need about on fm

Pm
. More precisely,

we need a bound
|P (m)| ≥ (1 + |m|)−N

What if P has zeroes on the lattice points? Make the change of notation f 7→ feix·ξ = g,
so u 7→ ueixξ = v. We can ask this question for the phase-shifted variables. To study our
equation, we need to expand

P (D)u = P (D)(ve−ix·ξ).

To use the Leibniz rule, note that,

Dj(ve
−ixξ) = Dve−ix·ξ + vDje

−ix·ξ

= e−ix·ξ(Djv − vξj)
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= e−ix·ξ(Dj − ξj)v,

We can write this as eix·ξDje
−ixξ = Dj − ξj , which we may think of as a conjugation.

Referring to our equation, we get

P (D)u = P (D)(veix cdotξ

= e−ix·ξp(D − ξ)v
= f,

which tells us that we have replaced P (D)u = f with

P (D − ξ)v = g.

So we only need to solve the new periodic problem is to define

vm =
gm

P (m− ξ)
, m ∈ Z.

Now we only need to find some ξ ∈ [0, 1]n such that

|P (m− ξ)| ≥ (1 + |m|)−N ∀m.

The following lemma tells us we can find such a ξ.

Lemma 1.1. If δ is small enough, then∫
1

(P (η))δ
1

(1 + |η|)N
dη <∞.

Proof. In 1 dimension, use partial fractions. Then reduce any number of dimensions to the
1-dimensional case.

How does this help us? Write η = m+ ξ with m ∈ Zn and ξ ∈ [0, 1]n. Then∫
ξ

∑
m

1

P (m− ξ)|δ
1

(1 + |m|)N
dη <∞.

So for almost every ξ, ∑
m

1

|P (m− ξ)|δ
1

(1 + |m|)N
= M <∞.

This tells us that
|P (m− ξ)| ≥M−1/d(1 + |m|)−N/δ,

which is exactly the relation we want to have.
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