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1 Fourier Transforms of Periodic Functions and Local Solv-
ability of Partial Differential Operators

1.1 Fourier transforms of periodic functions

A function f is periodic if
f(x) = f(z+a)

for some a and for all x.

Definition 1.1. f € D' is periodic of period a if

Suppose f is periodic; what can we say about ]?? Recall that for functions,
f(-+a)=et].
Using the periodic condition, write this as the multiplication
f(l — €)= .

Note that 1 — €% £ 0 unless £ = QTT” Then suppf - QTT”Z. As an analogy look at the
condition xf =0 = f = ¢dp; here, we have zeros at many points. So we conclude that
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Theorem 1.1. The coefficients ¢, are the Fourier coefficients for f in the interval [0, a],

and i
flx) = che%”.
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Here, we have ignored the factors of 2.



Remark 1.1. We can multiply f by e~ %™ and integrate from 0 to a to get

Cn = /f(a:)e_zammx.
Example 1.1. The simplest periodic distribution is

fa = Z(Sna-

Then R
fa=) cubzs,.
n

If we write

2mix

fa(l—ea )=0,

then we get

Thus, all the ¢,s are the same. So
fo= Caz(;m = Caf%f'
n

~

What is ¢,? Apply this to a Schwarz function: f(¢) = f($) by definition, so

cay_ O(EL) =" (ma).
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This is called the Poisson summation formula. R R
Now what happens if we replace ¢ by ¢e’®$0? Then (£) becomes ¢(£ —&p). The Poisson
summation formula gives
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The dependence of &y on the left hand side is simple. Integrate to get

/Oa 3 6(2mm)e 60 gy — /O > 6(ma — &) déo

=acq$(0)
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Accounting for the constants we ignored before, we get

0).
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Cqg = —.
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Remark 1.2. We can use the Poisson summation formula to compute all sorts of series.
Recall that F (14%2:) = ce ¢l (perhaps omitting constants). Choose a = 2. The Poisson
summation formula tells us that
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where we have ignored the constants.

1.2 Local solvability of partial differential operators

Let P(D) be our partial differential operator with constant coefficients.

Definition 1.2. P(D) is solvable if for each f, the equation P(D)u = f admits at least
one solution.

If feD, thenueD. If feS, then u €S. In general, the regularity of f and u will
be related, so when we say P(D) is solvable, we specify a class of functions f.

Definition 1.3. P(D) is locally solvable if for each f € £’, there exists a solution u € D’
in a neighborhood of the support of f.

~

If u e &, then P(§)u(§) = f(&) for £ € C™. Here is a narrower version, which we may
regard as the “real definition” of local solvability:

Definition 1.4. P(D) is locally solvable if for each xp, there is an € > 0 such that if
supp f C B(xg,¢), then a solution exists.

For today, we will deal with the first, more relaxed definition.

Theorem 1.2. Every constant coefficient partial differential operator is locally solvable (in
the relaxed sense).



Proof. Suppose f is supported in B C [0, 27]". Take fto be the periodic extension of f,
and look for a periodic solution u to P(D)u = f.

What does this periodization do? Originally, P(D)u = f gives P(§)u = f.sot = %f\
However, this has issues because P({) can have issues. In the periodic case, we know
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F& =" fubm,
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U8) = Umbm.
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We need P(m)uy, = fm, which gives
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The advantage is that we only P(m) # 0 on lattice points m € Z". However, the Fourier
transform is defined for temperate distributions, so we need about on I{,—:. More precisely,
we need a bound

|P(m)] > (1 4+ |m])~"

What if P has zeroes on the lattice points? Make the change of notation f + fei¢ = g,
so u — ue'™ = v. We can ask this question for the phase-shifted variables. To study our
equation, we need to expand

P(D)u = P(D)(ve ™).
To use the Leibniz rule, note that,
Dj(ve™ ) = Dve™ ¢ f vDje” "¢

= e "5 (Dju — ;)

4



= e "H(D; — &),

We can write this as ei"’“"'EDje_”c€ = D; — &;, which we may think of as a conjugation.
Referring to our equation, we get

P(D)u = P(D)(ve™* '
= e Ep(D — &
=/
which tells us that we have replaced P(D)u = f with
P(D—-¢&v=yg.
So we only need to solve the new periodic problem is to define

Im
= — € Z.
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Now we only need to find some ¢ € [0, 1]™ such that
[P(m =)l > 1+ |m)™™  vm.
The following lemma tells us we can find such a £.

Lemma 1.1. If § is small enough, then

/ 1 1 dn < oo
(Pm)? (1 + N 1=

Proof. In 1 dimension, use partial fractions. Then reduce any number of dimensions to the
1-dimensional case. O

How does this help us? Write n = m + £ with m € Z™ and £ € [0, 1]”. Then

1 1
/g; Plm— )P (Lt fm™ 1<

So for almost every &,

1 1
; Plm— P L+ mpy =

This tells us that
|P(m = &)] > M1+ m|)~N°,

which is exactly the relation we want to have. O
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